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Introduction



Specifications

Architects draw detailed plans before a brick is laid or a nail is
hammered. Programmers and software engineers don’t.

Can this be why houses seldom collapse and programs often crash?

To designers of complex systems, the need for formal specifications
should be as obvious as the need for blueprints of a skyscraper.

But few software developers write specifications because they have
little time to learn how on the job, and they are unlikely to have
learned in school.

— Leslie Lamport, Turing Award Winner, 2013
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Gaining Traction

Formal methods used to be relegated to safety critical systems:

• nuclear plants

• avionics

• medical devices
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Gaining Traction

Some formal methods are now practical and adopted by technology

leaders:

• Amazon

• Microsoft

• Facebook

• Dropbox
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Significance & Contributions



Unit-B

Unit-B [3] is a new framework for specifying and modelling systems that

must satisfy both safety and liveness properties.
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Unit-B Logic

Unit-B Logic supports arithmetic, sets, functions, relations, and intervals

theories.
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Unit-B Logic & Related Work

Unit-B vs Event-B [1]

• record types

• complete well-definedness

Unit-B vs TLA+ [4]

• type checking

• [static] well-definedness checking

• quantification over infinite sets1

Unit-B vs Logitext

• support for higher-order logic in
both predicate and sequent calculi
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Unit-B Web

Unit-B Webmakes the Literate Unit-B prover available on the web.

While Literate Unit-B supports both the Unit-B Logic and Unit-B’s

computation models, Unit-B Web currently only supports Unit-B Logic.
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Unit-B Web

Teaching

• demonstrations

• online evaluations

• support for assignments

Online Proof Environment

• making specifications more

accessible to casual users

• proof of concept for a web IDE
for full modelling capabilities of

Unit-B
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Technology Stack

Syntax

• LATEX-based

Web

• JavaScript

• JSON

• Yesod / Haskell

Prover
Haskell

• Type checking

• Well-definedness

• Proof tactics

Z3

• Predicate prover
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Type Checking



Type Checking

• {x}+ 3 ≤ 7

• not meaningful

• caught by Unit-B’s type checker

• TLA+ doesn’t recognize this as an error
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Figure 1: A type error — x is expected to be a set of numbers
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Challenges & Rewards

• TLA+’s untyped logic allows {3, {7}}
• Event-B’s simple type system forbids this

• ???

• subtyping to the rescue!

• type variables→ polymorphic definitions
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Well-definedness Checking



Well-definedness Checking

Catches meaningless formulas that type checker can’t catch:

• division by zero

• array index out of bounds

• more sophisticated errors
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Figure 2: An ill-defined predicate — x is not in the domain of f



Conclusion



Summary

• Unit-B Web, a web application for doing predicate calculus proofs,
bringing the Literate Unit-B prover to the web.

• Type Checking helps identify a certain class of meaningless
formulas (i.e. type-incorrect formulas) efficiently.

• Well-definedness Checking catches the rest of meaningless
formulas that are not type errors.
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Try Unit-B Web

Unit-B Web is available under the MIT open source license. You can get

the source code from GitHub:

github.com/unitb/unitb-web

18

https://github.com/unitb/unitb-web
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Summary

• Unit-B Web, a web application for doing predicate calculus proofs,
bringing the Literate Unit-B prover to the web.

• Type Checking helps identify a certain class of meaningless
formulas (i.e. type-incorrect formulas) efficiently.
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formulas that are not type errors.
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Presentation

The source code of this presentation is available at

github.com/aminb/cucsc-2017

licensed under a Creative Commons Attribution-ShareAlike 4.0

International License.

cba

https://github.com/aminb/cucsc-2017
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


Polymorphic Definitions

SameFields

SameFields(fs, r0, r1) ≜
(∀x : x ∈ fs : (x ∈ dom.r0 ∧ x ∈ dom.r1 ∧ r0.x = r1.x)

∨(¬x ∈ dom.r0 ∧ ¬x ∈ dom.r1))

• Given a set of strings (fs) and two records (r0, r1), checks that all
the specified fields have same value in both records.

• Works on any pair of records represented as partial functions.
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Completeness

Unit-B’s WD-calculus [2] is complete; while Event-B’s isn’t.

Consider four propositions A, B, C, and D, where

A ⇒ WD(B)

B ⇒ WD(C)

B ⇒ WD(D)
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Completeness

The following calculation is not

well-defined in Event-B, but it is

perfectly so in Unit-B:

A ⇒ WD(B)

B ⇒ WD(C)

B ⇒ WD(D)

A ∧ B ∧ (C ∨ D)

= {commutativity}
A ∧ (C ∨ D) ∧ B

= {distributivity}
((A ∧ C) ∨ (A ∧ D)) ∧ B

where

A : x ∈ dom.f
B : f.x ∈ dom.g
C : g.(f.x) ≤ 3
D : 7 ≤ g.(f.x)
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